
1

Using Root for Evaluating LAT
Performance

S. Ritz
1 October 2001

NOTE: examples given here are just examples. Don’t
use these as documentation of any selections!

2

First, some history and
observations

• I decided to use ROOT to do the analysis for the AO
response (someone needed to try it out). This was a
significant time investment. Operate on tuples.

• ROOT is enormously powerful w/ good documentation and
a large and growing user base.

• ROOT is a toolkit, NOTNOT an analysis platform. We must
still make a user platform!

• ROOT sometimes handles errors badly (or sometimes
doesn’t even tell you!)

3

My Modes of Using of ROOT and
Related Utilities

• interactive quick look at data, tryout ideas

• captured analysis

• full analysis

4

Interactive Mode
• Macro for setup root[0] .x setupb.c
{
//setup the canvas and read in the file
TCanvas *c1 = new TCanvas("c1","backgndmaxpdr_163k_6aug",680,0,720,720);
c1->Divide(2,2,.01,.01,21); // create 4 pads
// grab the file
f1 = new TFile("backgndmaxpdr_163k_6aug.root");
TTree *t1=(TTree*)f1->Get("PDR/t1");
//
// Change default style for the statistics box
gStyle->SetStatW(0.30);
gStyle->SetStatH(0.20);
gStyle->SetStatColor(42);
gStyle->SetOptStat(10);
t1->SetLineWidth(4);
t1->SetMarkerStyle(4);
t1->SetMarkerSize(0.5);
t1->SetMarkerColor(4);
t1->SetFillColor(5);
//
//
c1_1->cd();
c1_1->SetGrid();
c1_2->SetGrid();
c1_3->SetGrid();
c1_4->SetGrid();
c1_1->SetLogy();
c1_2->SetLogy();
c1_3->SetLogy();
c1_4->SetLogy();
//c1_1->SetLogx();
//c1_2->SetLogx();
//c1_3->SetLogx();
//c1_4->SetLogx();
c1->Update();
//
}

(Is there a ready-
made way to
title the canvas
with the
filename??)

Note the
subdirectory!!

5

Interactive Mode (2)

• Plots using TTree->Draw() with cuts, eg.,
t1->Draw(“ACD_DOCA”,”Trig_Bits>3.”);

Hint: move around pads in
two ways:
1) center-click with mouse
2) command line, e.g.,

c1_2->cd();

can drag out pads to make
larger/smaller/reposition

6

Interactive Mode (3)

• This gets cumbersome quickly, as the
number of cuts grows. Also, BEWARE,
there is some undefined limit to the length
of the command line – it never fails
outright, it just gets flaky!

• Two approaches: (1) another setup file to
define cuts, or (2) eventlists

7

{

TCut L1V = "((vetoword==0||vetoword>127.)&&(ntothit-nhitsiderow3-
nhitsiderow2)<3.)||(Trig_Bits&16)";

TCut L1T = "Trig_Bits>3.";

TCut L2T = "(TKR_No_Tracks>0.&&ACD_DOCA>25.)||(Trig_Bits&16)";

TCut tracks = "TKR_No_Tracks>0.";

}

Then, give the command
t1->Draw(“ACD_DOCA”,L1T&&L1V&&L2T);

Note that you can mix selections, such as
t1->Draw(“ACD_DOCA”,"(Trig_Bits&8)&&!(Trig_Bits&4)"&&L1T&&L2T&&L1V);

BUT the opposite order doesn’t work for some reason!
Also, the command character limit seems to apply to TCuts as well, so beware.

Exmaple: Define Cuts File
(.x defcuts.c)

8

Using Event Lists

• Tell ROOT only to use a subset of the
events. Speeds processing, and reduces
typing.

{

t1->Draw(">>glist2","Trig_Bits>3&&(ACD_DOCA>25.&&TKR_No_Tracks>0&&(ntothit-
nhitsiderow3-nhitsiderow2)<3)||(Trig_Bits&16)");

TEventList *listL22 = (TEventList*)gDirectory->Get("glist2");

t1->SetEventList(listL22);

}

All additional Draw commands will display only
the subset of events that are in the
eventlist sastifying these cuts.

9

Captured Analysis

• It soon becomes important to capture the
selections and plot sequences into a macro.
Place all the interactive commands into
macros to make well-defined sets of plots
that can be saved in a logbook with the
macro. WOULD BE NICE TO HAVE A WOULD BE NICE TO HAVE A
MATHCADMATHCAD-- or HIPPOor HIPPO--STYLE “LIVING STYLE “LIVING
DOCUMENT” to capture the analysis and DOCUMENT” to capture the analysis and
the rationale. This document would the rationale. This document would
integrate the macros and the resulting integrate the macros and the resulting
plots.plots.

10

Full Analysis

• The final stage is a full analysis, using TTree->MakeClass();
This produces a .h and .c file with useful methods such as
Loop. More sophisticated analyses can be done here,
including branches and detailed numerical calculations that
are not appropriate for command-line type formats.

•• BEWARE:BEWARE: you have to edit the .h file produced by
MakeClass to point into our PDR/t1 subdirectory. Also,
bewarebeware that eventlists defined on the command line are
NOT operative in these classes because the .h reads in the
ROOT tuple file fresh. And REALLY BEWARE: REALLY BEWARE:
unlike with macros, you can’t just reuse these classes on unlike with macros, you can’t just reuse these classes on
other ROOT other ROOT tuple tuple files. The .h file explicitly opens the files. The .h file explicitly opens the
ROOT file used to make the class. You can start a new ROOT file used to make the class. You can start a new
analysis session with a different ROOT file on the analysis session with a different ROOT file on the
command line, load the class you made, and when you run command line, load the class you made, and when you run
the loop you’ll be operating on the first ROOT file! No the loop you’ll be operating on the first ROOT file! No
warning, no hint, no nothing! Once understood, it makes warning, no hint, no nothing! Once understood, it makes
sense, but…sense, but…

11

Example: Event Selections
#define genlist2_cxx
#include "genlist2.h"
#include "TH2.h"
#include "TStyle.h"
#include "TCanvas.h"
void genlist2::Loop()
{
// In a Root session, you can do:
// Root > .L genlist2.C
// Root > genlist2 t
// Root > t.GetEntry(12); // Fill t data members with entry number 12
// Root > t.Show(); // Show values of entry 12
// Root > t.Show(16); // Read and show values of entry 16
// Root > t.Loop(); // Loop on all entries
//

// This is the loop skeleton
// To read only selected branches, Insert statements like:
// METHOD1:
// fChain->SetBranchStatus("*",0); // disable all branches
// fChain->SetBranchStatus("branchname",1); // activate branchname
// METHOD2: replace line
// fChain->GetEntry(i); // read all branches
//by b_branchname->GetEntry(i); //read only this branch

if (fChain == 0) return;

Int_t nentries = Int_t(fChain->GetEntries());
Int_t imax=1000;
Int_t nbytes = 0, nb = 0, iout = 0;
printf("Run_Number Event_ID\n");
for (Int_t jentry=0; (jentry<nentries&&iout<imax);jentry++) {

Int_t ientry = LoadTree(jentry); //in case of a TChain, ientry is the entry number in the current file
nb = fChain->GetEntry(jentry); nbytes += nb;
if (iout<imax&&genlist2::Trig_Bits>3.&&((genlist2::ACD_DOCA>25.&&genlist2::TKR_No_Tracks>0.&&((genlist2::ntothit-
genlist2::nhitsiderow3-genlist2::nhitsiderow2)<3.))||(genlist2::Trig_Bits&16))){

printf(" %i %i \n",genlist2::Run_Number,genlist2::Event_ID);
iout++;
}

}
printf("Total number of events: %i\n",iout);

}

This produces a list of run
and event numbers for
events that satisfy the
selections. I send this list
to Karl, who has a script
that automatically extracts
these events from the irfs.
Critical for analysis of the
50M event files – can
examine these in the single-
event displays.

Note how to access tuple variables

